skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Huang, J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 23, 2026
  2. Abstract Quasi-periodic motions can be numerically found in piecewise-linear systems, however, their characteristics have not been well understood. To illustrate this, an incremental harmonic balance (IHB) method with two timescales is extended in this work to analyze quasi-periodic motions of a non-smooth dynamic system, i.e., a gear transmission system with piecewise linearity stiffness. The gear transmission system is simplified to a four degree-of-freedom nonlinear dynamic model by using a lumped mass method. Nonlinear governing equations of the gear transmission system are formulated by utilizing the Newton’s second law. The IHB method with two timescales applicable to piecewise-linear systems is employed to examine quasi-periodic motions of the gear transmission system whose Fourier spectra display uniformly spaced sideband frequencies around carrier frequencies. The Floquet theory is extended to analyze quasi-periodic solutions of piecewise-linear systems based on introduction of a small perturbation on a steady-state quasi-periodic solution of the gear transmission system with piecewise linearities. Comparison with numerical results calculated using the fourth-order Runge-Kutta method confirms that excellent accuracy of the IHB method with two timescales can be achieved with an appropriate number of harmonic terms. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  3. Free, publicly-accessible full text available January 20, 2026
  4. We measure universal temperature-independent density shifts for the thermal conductivity κ T and shear viscosity η , relative to the high temperature limits, for a normal phase unitary Fermi gas confined in a box potential. We show that a time-dependent kinetic theory model enables extraction of the hydrodynamic transport times τ η and τ κ from the time-dependent free decay of a spatially periodic density perturbation, yielding the static transport properties and density shifts, corrected for finite relaxation times. Published by the American Physical Society2024 
    more » « less